If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+600x-30000=0
a = 4; b = 600; c = -30000;
Δ = b2-4ac
Δ = 6002-4·4·(-30000)
Δ = 840000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{840000}=\sqrt{40000*21}=\sqrt{40000}*\sqrt{21}=200\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(600)-200\sqrt{21}}{2*4}=\frac{-600-200\sqrt{21}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(600)+200\sqrt{21}}{2*4}=\frac{-600+200\sqrt{21}}{8} $
| 8u+48=-8(u-8) | | n2-9n=0 | | F(t)=120 | | 3/4y+2-1/2y=6 | | (2+f)3=-15 | | -25=55y | | 70+w=161 | | 8x–3=13+4x | | 14+v=62 | | 2x-1=4x-4 | | x^-2x-120=0 | | 100=y-(-9) | | -(3)=5x | | 12x^2-604x+30000=0 | | x+7=(-32) | | 3/4(x+8)=-12 | | 6x-9=3x+2(4x-3) | | 61=m+10 | | 178=u+97 | | y-9=(-33) | | 22+p=89 | | 3(2x+4)-x=47 | | 81+s=158 | | 000.2t=6 | | 5n+7/2=3/2n-14 | | X+50=-10(x-14)+x | | 5v+30=-4(6v+7) | | 45=x-9 | | 3x+20+6x-16=90 | | 5(2x-7)=15x10 | | 83=58+f | | W+31=2w-15.5 |